Minggu, 27 Januari 2013

Mengendalikan partikel di dunia Kuantum – Pemenang Nobel Fisika tahun 2012


Serge Haroche dan David J. Wineland secara terpisah menemukan dan mengembangkan metode untuk mengukur dan memanipulasi partikel individu sambil menjaga sifat alami mekanika-kuantum mereka, dimana sebelumnya dianggap tak mungkin dicapai.
Pemenang Nobel telah membuka pintu era baru percobaan dengan fisika kuantum dengan menunjukkan pengamatan secara langsung terhadap partikel kuantum secara individu tanpa menghancurkan mereka. Untuk partikel cahaya atau materi tunggal, hukum fisika klasik berhenti berlaku dan fisika kuantum mengambil alih. Tetapi partikel tunggal tidak dengan mudah diisolasi dari lingkungan sekitarnya, dan mereka kehilangan sifat misteri kuantum mereka segera setelah mereka berinteraksi dengan dunia luar. Dengan demikian fenomena yang tampaknya aneh yang diprediksikan oleh fisika kuantum tidak bisa langsung diamati, dan peneliti hanya bisa melakukan percobaan pikiran (biasanya menggunakan matematika) yang mungkin saja secara prinsip dapat mewujudkan fenomena aneh.
Melalui metode cerdik laboratorium Haroche dan Wineland bersama-sama dengan kelompok peniliti mereka telah berhasil mengukur dan mengendalikan keadaan kuantum yang sangat rapuh, yang sebelumnya dianggap tidak dapat diakses dengan pengamatan langsung. Metode baru ini memungkinkan mereka untuk memeriksa, mengontrol dan menghitung partikel.
Metode mereka memiliki banyak kesamaan. David Wineland memerangkap atom bermuatan listrik atau ion, mengendalikan dan mengukur cahayanya, atau foton.
Serge Haroche menggunakan pendekatan terbalik. Beliau mengendalikan dan mengukur foton (partikel cahaya) yang terperangkap dengan mengirim atom melalui perangkap.
Kedua pemenang bekerja di bidang optika kuantum yaitu mempelajari interaksi dasar menggunakan cahaya dan materi, bidang yang terlihat sangat maju sejak era tahun 1980 an. Metode yang mencengangkan ini telah memungkinkan bidang penelitian ini untuk mengambil langkah pertama membangun jenis baru komputer super cepat didasarkan pada fisika kuantum. Mungkin komputer kuantum akan mengubah tiap jengkal kehidupan di abad ini sebagaimana komputer klasik yang dilakukan abad sebelum ini. Penelitian ini juga menyebabkabkan untuk membangun jam yang sangat tepat dimana bisa menjadi dasar masa depan untuk standar waktu yang baru, dengan lebih dari seratus kali lipat presisi dari jam cesium yang digunakan sekarang.

Kamis, 24 Januari 2013

Karakter dalam Pembelajaran Fisika



Fisika adalah ilmu pengetahuan yang mempelajari zat dan interaksi komponen-komponennya. Sudah dikenal di masyarakat umum bahwa Fisika merupakan salah satu bidang ilmu yang tergolong “keras” atau tidak mudah dipahami. Fisika dianggap sebagai mata pelajaran dengan kumpulan rumus-rumus yang menjerumuskan siswa dengan hafalan yang memusingkan kepala. Anggapan tersebut, didukung oleh fakta bahwa banyak dari siswa memiliki nilai Fisika termasuk yang terendah di antara seluruh mata pelajaran di sekolah sampai perguruan tinggi.
Hal ini sungguh memprihatinkan, karena sains merupakan ilmu dasar yang harus dikuasai terlebih dahulu dalam rangka penguasaan teknologi pada jaman modern ini. Kita lihat saja, setiap perkembangan sebuah teknologi hamper dapat dipastikan didahului oleh penemuan sebuah gejala fisis baik di tataran makro, mikro sampai nano.
Kembali kami ingatkan tentang tujuan pembelajaran Fisika dalam kurikulum pendidikan di negara kita. Di sana disebutkan agar peserta didik memiliki kemampuan-kemampuan sebagai berikut: 
  1. Membentuk sikap positif terhadap fisika dengan menyadari keteraturan dan keindahan alam serta mengagungkan kebesaran Tuhan Yang Maha Esa.
  2. Memupuk sikap ilmiah yaitu jujur, obyektif, terbuka, ulet, kritis dan dapat bekerjasama dengan orang lain
  3. Mengembangkan pengalaman untuk dapat merumuskan masalah, mengajukan dan menguji hipotesis melalui percobaan, merancang dan merakit instrumen percobaan, mengumpulkan, mengolah, dan menafsirkan data, serta mengkomunikasikan hasil percobaan secara lisan dan tertulis.
  4. Mengembangkan kemampuan bernalar dalam berpikir analisis induktif dan deduktif dengan menggunakan konsep dan prinsip fisika untuk menjelaskan berbagai peristiwa alam dan menyelesaian masalah baik secara kualitatif maupun kuantitatif.
  5. Menguasai konsep dan prinsip fisika serta mempunyai keterampilan mengembangkan pengetahuan, dan sikap percaya diri sebagai bekal untuk melanjutkan pendidikan pada jenjang yang lebih tinggi serta mengembangkan ilmu pengetahuan dan teknologi.
Seorang penulis buku yang bernama Siti Rohmah pernah mengatakan bahwa memahami konsep-konsep dan selanjutnya  memahami prinsip yang menyatakan hubungan antara konsep adalah langkah awal dan sangat penting dalam belajar fisika. Oleh sebab itu, di dalam pembelajaran fisika, unsur kepemahaman atau pengertian jauh lebih dominan daripada unsur hafalan.
Semoga tulisan singkat ini dapat mengingatkan terutama untuk diri saya pribadi mengenai makna dari sebuah pembelajaran Fisika. Selalu berharap agar menjadikan siswa-siswa kita memiliki karakter layaknya seorang fisikawan muda yang mengagungkan kebesaran Tuhannya, bersikap ilmiah, berpikir analisis serta mempunyai keterampilan mengembangkan pengetahuan dan pengalamannya.


Jumat, 04 Januari 2013

Misteri Bola dari Luar Angkasa di Nambia Terungkap


NAMIBIA - Bola logam dari luar angkasa yang jatuh di Namibia akhirnya terungkap. Benda langit tersebut sebelumnya sempat membuat heboh warga di benua Afrika tersebut. Lalu benda apakah yang menghebohkan tersebut?
Menurut para peneliti yang melakukan penyelidikan atas benda tersebut mengungkapkan, kemungkinan besar tangki bahan bakar dari sebuah roket tak berawak. Bola logam ini mempunyai berat 6 kilogram dengan diameter 1,1 meter, ditemukan di dekat sebuah desa di sebuah padang rumput terpencil sekitar 750km dari ibukota, Windhoek.
Warga melaporkan bahwa mendengar ledakan kecil beberapa kali beberapa hari sebelumnya dan otoritas yang berwajib bingung menghubungi NASA dan badan antariksa Eropa. Sedangkan internet mulai berputar-putar soal rumor bahwa hal itu mungkin menjadi bukti kehidupan mahluk asing di luar Bumi.
Dilansir melalui The Age, Selasa (27/12/2011), para ilmuwan berspekulasi bahwa itu adalah tangki hidrazin 39 liter, yang biasanya digunakan pada roket tak berawak untuk meluncurkan satelit. Namun mereka tidak menjelaskan mengapa bola tersebut jatuh ke dalam suatu jejak geografis tertentu.
Dalam 20 tahun terakhir, beberapa bola serupa dikabarkan telah jatuh di Afrika Selatan, Australia dan Amerika Latin.


Misteri Bola dari Luar Angkasa di Nambia Terungkap

PENEMUAN MATAHARI BARU


Penemuan Matahari BaruBerita Terbaru, Astronom NASA untuk pertama kalinya menemukan planet yang mirip dengan Matahari. Benarkah ada 2 matahari dalam tata surya kita? Memang bintang itu bersinar berwarna kekuning-kuningan namun tidak seterang matahari dan tidak besar seperti matahari melainkan hanyalah bintang katai merah kecil. Bintang katai itu lebih redup dan lebih dingin. Astronomi mengklarifikasi tentang penemuan planet baru yang mirip dengan matahari itu. Mereka menjelaskan bahwa nama planet baru itu adalah planet Gliese 581. Kehadiran Gliese 581 ini disertai dengan penemuan planet yang mengitari Gliese 581. Planet yang disebut-sebut exoplanet ini memiliki kesamaan hampir mirip dengan bumi hanya ukurannya memiliki besar 2 kali lipat dari bumi. Exoplanet itu memiliki suhu yang cocok bagi makhluk hidup yang berkisar antara 0-40 derajat dan air di planet itu masih berbentuk cairan tidak membeku dan sebagian wilayah masih berbentuk batuan jadi planet ini disinyalir planet layak huni manusia. Penemuan ini akan terus dikembangkan oleh para peneliti. Jika memang bisa dijadikan layak huni manusia, planet itu akan dijadikan tempat ruang angkasa.

Penemuan baru-baru ini telah ditemukan yang disebut-sebut sebagai matahari tersebut. Penemuan ini dilihat langsung oleh teleskop Herschel milik Badan Luar Angkasa Eropa (ESA) yang baru diluncurkan tanggal 14 mei 2010 kemarin. Teleskop ini mampu menangkap gelombang-gelombang yang tak bisa dilihta oleh teleskop lain. Calon bintang raksasa ini disinyalir memiliki panas yang lebih daripada matahari. Saat ini bintang itu masih berbentuk embrio dan diperkirakan akan tumbuh terus menjadi bintang raksasa yang pernah ada di galaksi Bima Sakti pada ribuan tahun mendatang. Pertumbuhan bintang ini sebagai ilmu untuk penelitian tentang proses terjadinya bintang dengan menggunakan teleskop herschel. “Ini merupakan bintang besar yang menciptakan elemen berat seperti besi dan elemen-elemen tersebut akan berada di ruang antar bintang. Dan karena bintang-bintang besar mengakhiri hidup mereka dengan ledakan supernova, mereka juga menyuntikkan energi besar ke galaksi,” ungkap ilmuwan teleskop herschel.

PERKEMBANGAN ASTRONOMI MODERN


1.      PENGERTIAN DASAR ASTRONOMI
Astronomi, yang secara etimologi berarti "ilmu bintang" (dari Yunani: άστρο, + νόμος), adalah ilmu yang melibatkan pengamatan dan penjelasan kejadian yang terjadi di luar Bumi dan atmosfernya. Ilmu ini mempelajari asal-usul, evolusi, sifat fisik dan kimiawi benda-benda yang bisa dilihat di langit (dan di luar Bumi), juga proses yang melibatkan mereka. Astronomi adalah salah satu di antara sedikit ilmu pengetahuan di mana amatir masih memainkan peran aktif, khususnya dalam hal penemuan dan pengamatan fenomena sementara. Astronomi jangan dikelirukan dengan astrologi, ilmu semu yang mengasumsikan bahwa takdir manusia dapat dikaitkan dengan letak benda-benda astronomis di langit. Meskipun memiliki asal-muasal yang sama, kedua bidang ini sangat berbeda; astronom menggunakan metode ilmiah, sedangkan astrolog tidak.

2.      CABANG-CABANG ILMU ASTRONOMI
Ada beberapa pengklarifikasian dalam ilmu astronomi sebagai berikut :
•         Astrometri: cabang ilmu Astronomi yang mempelajari hubungan geometris benda-benda angkasa, meliputi: kedudukan benda-benda angkasa, jarak benda angkasa yang satu dengan yang lain, ukuran benda angkasa, rotasi dan revolusinya.. Mendefinisikan sistem koordinat yang dipakai dan kinematika dari benda-benda di galaksi kita.
•         Kosmologi: penelitian alam semesta sebagai seluruh dan evolusinya.
•         Fisika galaksi: penelitian struktur dan bagian galaksi kita dan galaksi lain.
•         Astronomi ekstragalaksi: penelitian benda (sebagian besar galaksi) di luar galaksi kita.
•         Pembentukan galaksi dan evolusi: penelitian pembentukan galaksi, dan evolusi mereka.
•         Ilmu planet: penelitian planet dan tata surya.
•         Fisika bintang: penelitian struktur bintang.
•         Evolusi bintang: penelitian evolusi bintang dari pembentukan mereka sampai akhir mereka sebagai bintang sisa.
•         Pembentukan bintang: penelitian kondisi dan proses yang menyebabkan pembentukan bintang di dalam awan gas, dan proses pembentukan itu sendiri.

3.      SEJARAH PERKEMBANGAN ASTRONOMI MODERN
Sistem Copernicus yang baru tentang alam semesta menempatkan matahari sebagai pusat alam semesta, serta terdapat tiga jenis gerakan bumi. Tiga jenis gerakan bumi itu adalah gerak rotasi bumi (perputaran bumi pada porosnya),gerak revolusi (gerak bumi mengelilingi matahari) dan suatu girasi perputaran sumbu bumi yang mempertahankan waktu siang dan malam sama panjangnya.Teori Copernicus tersebut ditulis tangan dan diedarkan di antara kawan-kawannya pada tahun 1530.Teori Copernicus menjadi semakin terkenal dan menarik perhatian seorang ahli matematika dari wittenberg bernama George Rheticus (1514-1576). Rheticus kemudian belajar bersama Copernicus dan pada tahun 1540 menerbitkan buku tentang teori Copernicus.Akhirnya Copernicus menerbitkan hasil karyanya sendiri pada tahun 1543 berjudul On the Revolutions Of the Celestial Orbs.
Buku copernicus dicetak di Nuremberg, pada awalnya di bawah supervisi Rheticus, kemudian dilanjutkan di bawah supervisi Andreas Osiander, seorang pastor Lutheran. Osiander menambahkan kata pengantar untuk karya Copernicus dengan menyatakan bahwa teori yang baru itu tidak harus benar,dan dapat dipandang semata-mata sebagai suatu kecocokan metode matematis tentang benda-benda langit.Copernicus sendiri tidak berpendapat begitu. Ia berpendapat bahwa sistem semesta yang dikemukakannya adalah nyata.
Copernicus berpendapat bahwa sistem yang dikemukakan oleh ptolemous ‘tidak cukup tepat, tidak cukup memuaskan pikiran’, karena ptolemous beranjak langsung dari karya kelompok Pythagoras. Untuk menjelaskan gerakan benda-benda langit, ptolemous menganggap bahwa benda-benda langit itu bergerak melingkar dengan kecepatan angular yang tidak sama relatif terhadap pusatnya, kecepatan anguler itu hanya sama terhadap titik di luar pusat lingkaran itu. Menurut copernicus, asumsi itu merupakan kesalahan pokok dari sistem ptolemous. Akan tetapi hal ini bukan hal pokok yang dikemukakan oleh copernicus. Kritik utama yang dikemukakan oleh copernicus kepada para ahli astronomi pendahulunya adalah, dengan menggunakan aksioma-aksiomanya, mereka telah gagal menjelaskan gerakan benda-benda langit yang teramati dan juga teori-teori yang mereka kembangkan melibatkan sistem yang rumit yang tidak perlu. Copernicus menilai para pendahulunya dengan mengatakan : “di dalam metode yang dikembangkan, mereka telah mengabaikan hal-hal penting atau menambahkan hal-hal yang tidak perlu”.
Copernicus memusatkan perhatian pada hal yang terakhir. Ia melihat bahwa para leluhurnya telah menambahkan tiga gerakan bumi untuk setiap benda langit agar sampai pada kesimpulan bahwa bumi berada diam di pusat putaran. Ketiga lingkaran tersebut telah ditambahkan untuk setiap benda langit di dalam sistem geometris bangsa Yunani untuk menjelaskan gerakan benda-benda langit dengan bumi sebagai pusatnya. Copernicus berpendapat bahwa lingkaran-lingkaran tersebut tidak diperlukan dengan berpendapat bahwa bumi berputar pada sumbuhnya setiap hari dan bergerak melintasi orbitnya mengitari matahari setiap tahun. Dengan cara demikian, Copernicus mengurangi jumlah lingkaran yang diperlukan untuk menjelaskan gerakan benda-benda langit.
Di dalam sistem Copernicus, bumi berputar mengitari matahari, seperti planet-planet lainnya. Bumi menjalani gerakan yang seragam dan melingkar sebagai benda langit, suatu gerakan yang sejak lama diyakini sebagai gerakan yang sempurna. Lebih jauh, copernicus menekankan kesamaan antara bumi dengan benda-benda langit lainnya bahwa semuanya memiliki gravitasi. Gravitasi ini tidak berada di langit, melainkan bekerja pada materi, seperti bumi dan benda-benda langit memiliki gaya ikat dan mempertahankannya dalam suatu lingkaran yang sempurna. Untuk hal ini penjelasan copernicus agak berbau teologis : “menurut saya gravitasi tidak lain daripada suatu kekuatan alam yang diciptakan oleh pencipta agar supaya semuanya berada dalam kesatuan dan keutuhan. Kekuatan seperti itu mungkin juga dimiliki oleh matahari, bulan dan planet-planet agar semuanya tetap bundar”
Dengan sistem Copernicus, perhitungan astronomi dibuat menjadi lebih mudah, karena melibatkan jumlah lingkaran yang lebih sedikit. Tetapi prakiraan posisi planet-planet dan perhitungan lainnya tidak lebih tepat daripada dihitung dengan menggunakan sistem ptolemous, keduanya masih memiliki kesalahan sekitar satu persen. Selanjutnya terdapat keberatan-keberatan terhadap sistem Copernicus. Pertama, dan mungkin tidak terlalu serius ketika itu, adalah kenyataan bahwa pusat tata surya tidak tepat berada pada matahari. Copernicus menempatkan pusat tatasurya pada pusat orbit bumi, yang tidak persis berada pada matahari, untuk menjelaskan perbedaan panjang musim-musim. Beberapa filsuf berpendapat bahwa pusat tata surya haruslah berada pada suatu obyek nyata, meskipun banyak juga yang menerima bahwa titik geometris dapat dipakai sebagai pusat tatasurya. Selanjutnya, para pendukung aristoteles berpendapat bahwa gravitasi bekerja ke arah titik geometris tersebut, sebagai pusat tatasurya, yang tidak harus sama dengan pusat bumi.
Keberatan kedua, yang lebih serius, menyatakan bahwa bila bumi berputar, maka udara cenderung tertinggal di belakang, hal ini akan menimbulkan angin yang arahnya ke timur. Copernicus memberikan dua jawaban untuk keberatan timur. Pertama, yang merupakan suatu jenis penjelasan abad pertengahan, yaitu udara berputar bersama-sama dengan bumi karena udara berisi partikel-partikel bumi yang memiliki sifat-sifat yang sama dengan bumi. Maka bumi menarik udara berputar bersama-sama dengan bumi karena udara bersisi partikel-partikel bumi. Maka bumi menarik udara berputar dengan bumi. Jawaban kedua yang bersifat modern, udara berputar tanpa hambatan karena udara berdampingan dengan bumi yang terus menerus berputar. Keberatan yang sama adalah apabila sebuah batu dilemparkan ke atas maka batu itu akan tertinggal oleh bumi yang berputar, sehingga kalau batu itu jatuh akan berada di sebelah barat proyeksi batu itu. Untuk keberatan ini, copernicus menjawab ‘karena benda-benda yang ditarik ke tanah oleh beratnya adalah terbuat dari tanah, maka tidak diragukan bahwa benda-benda itu memiliki sifat yang sama dengan bumi secara keseluruhan, sehingga berputar bersama-sama dengan bumi’

4.      KONTRIBUSI ILMUWAN MUSIM DALAM BIDANG ASTRONOMI
Copernicus sebagai penemu ilmu astronomi modern. Selain itu, tokoh-tokoh astronomi Eropa lainnya seperti Regiomantanus, Kepler dan Peubach tak mungkin mencapai sukses tanpa jasa Al-Batani ( salah satu Ilmuwan Astronomi Islam ). Astronomi Islam Setelah runtuhnya kebudayaan Yunani dan Romawi pada abad pertengahan, maka kiblat kemajuan ilmu astronomi berpindah ke bangsa Arab. Astronomi berkembang begitu pesat pada masa keemasan Islam (8 - 15 M). Karya-karya astronomi Islam kebanyakan ditulis dalam bahasa Arab dan dikembangkan para ilmuwan di Timur Tengah, Afrika Utara, Spanyol dan Asia Tengah.
Salah satu bukti dan pengaruh astronomi Islam yang cukup signifikan adalah penamaan sejumlah bintang yang menggunakan bahasa Arab, seperti Aldebaran dan Altair, Alnitak, Alnilam, Mintaka (tiga bintang terang di sabuk Orion), Aldebaran, Algol, Altair, Betelgeus.
Selain itu, astronomi Islam juga mewariskan beberapa istilah dalam `ratu sains' itu yang hingga kini masih digunakan, seperti alhidade, azimuth, almucantar, almanac, denab, zenit, nadir, dan vega. Kumpulan tulisan dari astronomi Islam hingga kini masih tetap tersimpan dan jumlahnya mencapaii 10 ribu manuskrip. Ahli sejarah sains, Donald Routledge Hill, membagi sejarah astronomi Islam ke dalam empat periode. Periode pertama (700-825 M) adalah masa asimilasi dan penyatuan awal dari astronomi Yunani, India dan Sassanid. Periode kedua (825-1025) adalah masa investigasi besar-besaran dan penerimaan serta modifikasi sistem Ptolomeus. Periode ketiga (1025-1450 M), masa kemajuan sistem astronomi Islam. Periode keempat (1450-1900 M), masa stagnasi, hanya sedikit kontribusi yang dihasilkan.
Sejumlah, ahli astronomi Islam pun bermunculan, Nasiruddin at-Tusi berhasil memodifikasi model semesta episiklus Ptolomeus dengan prinsip-prinsip mekanika untuk menjaga keseragaman rotasi benda-benda langit. Selain itu, ahli matematika dan astronomi Al-Khawarizmi, banyak membuat tabel-tabel untuk digunakan menentukan saat terjadinya bulan baru, terbit-terbenam matahari, bulan, planet, dan untuk prediksi gerhana. Ahli astronomi lainnya, seperti Al-Batanni banyak mengoreksi perhitungan Ptolomeus mengenai orbit bulan dan planet-planet tertentu. Dia membuktikan kemungkinan gerhana matahari tahunan dan menghitung secara lebih akurat sudut lintasan matahari terhadap bumi, perhitungan yang sangat akurat mengenai lamanya setahun matahari 365 hari, 5 jam, 46 menit dan 24 detik.
Astronom Islam juga merevisi orbit bulan dan planet-planet. Al-Battani mengusulkan teori baru untuk menentukan kondisi dapat terlihatnya bulan baru. Tak hanya itu, ia juga berhasil mengubah sistem perhitungan sebelumnya yang membagi satu hari ke dalam 60 bagian (jam) menjadi 12 bagian (12 jam), dan setelah ditambah 12 jam waktu malam sehingga berjumlah 24 jam. Buku fenomenal karya Al-Battani pun diterjemahkan Barat.
Ilmuwan Islam begitu banyak memberi kontribusi bagi pengembangan dunia astronomi. Buah pikir dan hasil kerja keras para sarjana Islam di era tamadun itu diadopsi serta dikagumi para saintis Barat. Inilah beberapa ahli astronomi Islam dan kontribusi yang telah disumbangkannya bagi pengembangan `ratu sains' itu.
1.      Al-Battani (858-929)
 Sejumlah karya tentang astronomi terlahir dari buah pikirnya. Salah satu karyanya yang paling populer adalah al-Zij al-Sabi. Kitab itu sangat bernilai dan dijadikan rujukan para ahli astronomi Barat selama beberapa abad, selepas Al-Battani meninggal dunia. Ia berhasil menentukan perkiraan awal bulan baru, perkiraan panjang matahari, dan mengoreksi hasil kerja Ptolemeus mengenai orbit bulan dan planet-planet tertentu. Al-Battani juga mengembangkan metode untuk menghitung gerakan dan orbit planet-planet. Ia memiliki peran yang utama dalam merenovasi astronomi modern yang berkembang kemudian di Eropa.
2.      Al-Sufi (903-986 M)
 Orang Barat menyebutnya Azophi. Nama lengkapnya adalah Abdur Rahman as-Sufi. Al-Sufi merupakan sarjana Islam yang mengembangkan astronomi terapan. Ia berkontribusi besar dalam menetapkan arah laluan bagi matahari, bulan, dan planet dan juga pergerakan matahari. Dalam Kitab Al-Kawakib as-Sabitah Al-Musawwar, Azhopi menetapkan ciri-ciri bintang, memperbincangkan kedudukan bintang, jarak, dan warnanya. Ia juga ada menulis mengenai astrolabe (perkakas kuno yang biasa digunakan untuk mengukur kedudukan benda langit pada bola langit) dan seribu satu cara penggunaannya.
3.      Al-Biruni (973-1050 M)
Ahli astronomi yang satu ini, turut memberi sumbangan dalam bidang astrologi pada zaman Renaissance. Ia telah menyatakan bahwa bumi berputar pada porosnya. Pada zaman itu, Al-Biruni juga telah memperkirakan ukuran bumi dan membetulkan arah kota Makkah secara saintifik dari berbagai arah di dunia. Dari 150 hasil buah pikirnya, 35 diantaranya didedikasikan untuk bidang astronomi.
4.      Ibnu Yunus (1009 M)
Sebagai bentuk pengakuan dunia astronomi terhadap kiprahnya, namanya diabadikan pada sebuah kawah di permukaan bulan. Salah satu kawah di permukaan bulan ada yang dinamakan Ibn Yunus. Ia menghabiskan masa hidupnya selama 30 tahun dari 977-1003 M untuk memperhatikan benda-benda di angkasa. Dengan menggunakan astrolabe yang besar, hingga berdiameter 1,4 meter, Ibnu Yunus telah membuat lebih dari 10 ribu catatan mengenai kedudukan matahari sepanjang tahun.
5.      Al-Farghani
Nama lengkapnya Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani. Ia merupakan salah seorang sarjana Islam dalam bidang astronomi yang amat dikagumi. Beliau adalah merupakan salah seorang ahli astronomi pada masa Khalifah Al-Ma'mun. Dia menulis mengenai astrolabe dan menerangkan mengenai teori matematik di balik penggunaan peralatan astronomi itu. Kitabnya yang paling populer adalah Fi Harakat Al-Samawiyah wa Jaamai Ilm al-Nujum tentang kosmologi.
6.      Al-Zarqali (1029-1087 M)
Saintis Barat mengenalnya dengan panggilan Arzachel. Wajah Al-Zarqali diabadikan pada setem di Spanyol, sebagai bentuk penghargaan atas sumbangannya terhadap penciptaan astrolabe yang lebih baik. Beliau telah menciptakan jadwal Toledan dan juga merupakan seorang ahli yang menciptakan astrolabe yang lebih kompleks bernama Safiha.
7.      Jabir Ibn Aflah (1145 M)
Sejatinya Jabir Ibn Aflah atau Geber adalah seorang ahli matematik Islam berbangsa Spanyol. Namun, Jabir pun ikut memberi warna da kontribusi dalam pengembangan ilmu astronomi. Geber, begitu orang barat menyebutnya, adalah ilmuwan pertama yang menciptakan sfera cakrawala mudah dipindahkan untuk mengukur dan menerangkan mengenai pergerakan objek langit. Salah satu karyanya yang populer adalah Kitab al-Hay'ah.

5.      PERKEMBANGAN ILMU ASTRONOMI PADA ZAMAN MODERN
         Para pakar astronomi pada zaman sekarang sudah mulai meneliti keadaan planet-planet luar angkasa dengan menerbangkan beberapa astronot untuk melakukan obserfasi ke planet-planet sebagai salah satu contohnya adalah planet mars. Planet merah (Mars) merupakan planet yang mendapatkan konsentrasi penuh dari para astronom. Bahkan mereka sampai membuat sebuah robot yang mampu menelusuri dataran Mars. Nasa Phoenix berhasil mendarat di Mars pada bulan Mei lalu. Dari sinilah diketahui bahwa planet Mars mampu dihidupi oleh manusia karena terdapat sumber air di dalamnya.

6.      PERKEMBANGAN ILMU ASTRONOMI DI INDONESIA
         Mulai abad ke 18, perjalanan Astronomi Indonesia telah beranjak ke arah yang lebih empiris. Pada masa itu, masyarakat dunia belum tahu jarak Bumi-Matahari. Halley, yang telah menemukan cara untuk menentukan paralaks Matahari, membutuhkan pengamatan di tempat yang berbeda-beda. Dengan menggunakan hukum Kepler, ia telah menghitung akan terjadinya transit Venus pada tahun 1761 dan 1769. Dan pengamatan fenomenal itu dilakukan di Batavia (Jakarta), di sebuah Planetarium pribadi milik John Mauritz Mohr, seorang pendeta Belanda kelahiran Jerman. Selain Mohr, Astronom Perancis De Bougainvile juga melakukan pengamatan transit Venus pada tahun 1769. Indonesia, yang terbentang dari Sabang sampai Merauke hanya memiliki sedikit sekali fasilitas astronomi. Hampir semua kegiatan astronomi terpusat di Observatorium Bosscha dan Planetarium Jakarta. Ide pembuatan observatorium di daerah-daerah terpencil sudah ada sejak dulu. Yang sudah mulai berjalan seperti Planetarium di Palembang dan Tenggarong, Kalimantan. Juga adanya rencana menjadikan Pulau Biak sebagai tempat peluncuran satelit. Para pecinta Astronomi dan masyarakat Indonesia pada umumnya, memiliki mimpi agar dapat dibangun lagi observatorium-observatroium di daerah-daerah ataupun pulau-pulau terpencil lainnya. Selain belum banyak terjamah manusia, hingga tingkat polusinya kecil dan memungkinkan untuk melihat langit sangat cerah, pembangunan fasilitas astronomi itu juga menjadi sebuah ajang penyebaran pendidikan sains yang tentunya dapat mengurangi tingkat kebodohan masyarakat Indonesia.
Pemerintah Indonesia dan para pecinta Astronomi dapat bekerja sama dalam menyebarkan ilmu astronomi. Dengan tersedianya fasilitas media yang cukup banyak, keinginan adanya majalah atau tabloid astronomi tentunya mimpi yang harus diwujudkan. Kesediaan pemerintah untuk menyokong dana riset ataupun kegiatan keilmuan ini juga sangatlah diharapkan.


PERKEMBANGAN TEORI GRAVITASI


Gravitasi merupakan gaya interaksi fundamental yang ada di alam. Para perencana program ruang angkasa secara terus menerus menyelidiki gaya ini. Sebab, dalam sistem tata surya dan penerbangan ruang angkasa, gaya gravitasi merupakan gaya yang memegang peranan penting. Ilmu yang mendalami dinamika untuk benda-benda dalam ruang angkasa disebut mekanika celestial. Sekarang, pengetahuan tentang mekanika celestial memungkinkan untuk menentukan bagaimana menempatkan suatu satelit dalam orbitnya mengelilingi
bumi atau untuk memilih lintasan yang tepat dalam pengiriman pesawat ruang angkasa ke planet lain.
Sejak zaman Yunani Kuno, orang sudah berusaha menjelaskan tentang kinematika sistem tata surya. Oleh karena itu, sebelum membahas hukum gravitasi Newton, ada baiknya apabila Anda juga memahami pemikiran sebelum Newton menemukan hukum gravitasi.

Plato (427 – 347 SM) ilmuwan yunani mengemukakan bahwa bintang dan bulan bergerak mengelilingi bumi membentuk lintasan lingkaran sempurna. Claudius Ptolemaus pada abad ke-2 M juga memberikan pendapat yang serupa yang disebut teori geosentris. Teori ini menyatakan bumi sebagai pusat tata surya, sedangkan planet lain, bulan dan matahari berputar mengelilingi bumi. Namun, pendapat dari kedua tokoh tersebut tidak dapat menjelaskan gerakan yang rumit dari planet-planet.

Nicolaus Copernicus, ilmuwan asal Polandia, mencoba mencari jawaban yang lebih sederhana dari kelemahan pendapat Plato dan Ptolemaus. Ia mengemukakan bahwa matahari sebagai pusat sistem planet dan planet planet lain termasuk bumi mengitari matahari. Anggapan Copernicus memberikan dasar yang kuat untuk mengembangkan pandangan mengenai tata surya. Namun, pertentangan pendapat di kalangan ilmuwan masih tetap ada. Hal ini mendorong para ilmuwan untuk mendapatkan data pengamatan yang lebih teliti dan konkret.

Tyco Brahe (1546–1601) berhasil menyusun data mengenai gerak planet secara teliti. Data yang Tyco susun kemudian dipelajari oleh Johannes Keppler (1571–1630). Keppler menemukan keteraturan-keteraturan gerak planet. Ia mengungkapkan tiga kaidah mengenai gerak planet, yang sekarang dikenal sebagai hukum I, II, dan III Kepler. Hukum-hukum Kepler tersebut menyatakan:
1. Semua planet bergerak di dalam lintasan elips yang berpusat di satu titik pusat (matahari).
2. Garis yang menghubungkan sebuah planet ke matahari akan memberikan luas sapuan yang sama dalam waktu yang sama.
3. Kuadrat dari periode tiap planet yang mengelilingi matahari sebanding dengan pangkat tiga jarak rata-rata planet ke matahari.

Pendapat Copernicus dan hukum Keppler memiliki kesamaan bahwa gaya sebagai penyebab keteraturan gerak planet dalam tata surya. Pada tahun 1687,Isaac Newton membuktikan dalam bukunya yang berjudul “Principia” bahwa gerakan bulan mengelilingi bumi disebabkan oleh pengaruh suatu gaya. Tanpa gaya ini bulan akan bergerak lurus dengan kecepatan tetap. (Sesuai dengan inersia), gaya ini dinamakan gaya gravitasi.

Gaya gravitasi memengaruhi gerakan planet-planet dan benda-benda angkasa lainnya. Selain itu, gaya gravitasi juga penyebab mengapa semua benda jatuh menuju permukaan bumi. Pemikiran Newton merupakan buah karya luar biasa karena dapat menyatukan teori mekanika benda di bumi dan mekanika benda di langit. Hal ini dapat dilihat dari penjelasan mengenai gerak jatuh bebas dan gerak planet dalam tata surya.